	 	 	 			·	
USN						06EC7	2

Seventh Semester B.E. Degree Examination, Dec.2014/Jan.2015

Optical Fiber Communication

ime: 3 hrs. Note: Answer FIVE full questions, selecting

at least TWO questions from each part.

With the help of a block diagram, explain the main constituents optical fiber communication link.

- b. Define the terms: i) acceptance angle, ii) numerical aperture. Derive expressions for maximum acceptance angle and numerical aperture highlighting their relationship. (08 Marks)
- A step index fiber has a core and cladding refractive indices of 1.48 and 1.46 respectively and supports propegation of an optical signal of wavelength 820 nm. Calculate core radius, numerical aperture and acceptance angle for a single gode fiber.
- Discuss briefly various attenuation mechanisms in an optical fiber. (09 Marks)
 - b. What are intromodal dispersion and inter modal dispersion? (06 Marks)
 - c. An CED operating at 850 nm has a spectral width of 45 nm. What is the pulse spreading in ns/km due to material dispersion?
- With the help of a schematic diagrams, explain the design features of an edge emitting LED. (06 Marks)
 - Define the terms:
 - Spontaneous emission C
 - Stimulated emission
 - iii) Quantum efficiency

(03 Marks)

With the help of a schematic diagram, explain briefly construction and operation of RAPD.

- An InGaAs PN diode operating at a wavelength of 1300 nm has the following specification:
 - Quantum efficiency = 90%
 - ii) Dark current ID = 4 nA
 - iii) Load resistor RL = 1 K Ω
 - "Incident optical power = 300 nW
 - Receiver bandwidth = 200 MHz

Assuming negligible surface leakage current, calculate the mean square value of dot noise, dark current noise and thermal noise currents.

Show that $P_{LED \text{ step}} = P_s (NA)^2$ for $r \le a$ with usual notations.

- Explain briefly the principle of operation of the following:
 - Expanded beam connectors
 - ii) Fiber fused biconical taper coupler

(08 Marks)

- c. Consider a LED with a circular emitting area of radius 36µm and a Lambertian Gaussian pattern of 151 Watts. Compare the optical power coupled into following two types of step index fibers:
 - SIF with a core radius of 26 μ m (NA = 0.2)
 - ii) SIF with a core radius of 51 μ m (NA = 0.2)

(04 Marks)

PART - B

- With the help of a signal flow diagram, explain briefly the operation of a digital transmission link as an optical data link with waveforms at each stage. (08 Marks)
 - b. Write short notes on the following:
 - i) FET based high impedance amplifier
 - ii) Noise sources in optical receiver
 - iii) Burst mode receiver

a. Derive an expression for carrier to noise ratio (CNR) of an analog obtical fiber remmunication system under limiting conditions of noise sources involved

- Write short notes on the following:
 - i) Kiso tile budget
 - ii) Link power budget

- c. Calculate system rise time for a multimode optical fiber link with the following parameters:

 i) LED with a drive circuit having rise time of 15 no.
 - i) LED with 3 drive circuit having rise time of 15 ns.

 - ii) LED spectral width 540 nm.
 iii) Material dispersion related rise time 21 ns over a 6 km long link.
 - iv) Receiver bandwich 25 MHz.
 - v) Modal dispersion rise time 3.9 ns.

(04 Marks)

- a. Define the following terms with relevant form
 - i) Excess loss
 - ii) Return loss
 - iii) Insertion loss

- b. What is WDM? How it is implemented in an OFC system?
- c. Write short notes on any two of the following:

- in the reference to 2 × 2 fuseu.

 What is WDM? How it is implemented.

 Write short notes on any two of the following:

 8 × 8 star coupler

 ii) optical isolators

 iii) optical circulators

 iv) optical add/stor multiplexers

 Describe working of an EDFA.

 List out the basic applications of optical amplifiers and describe of the fly with the different configurations.

 (04 Marks)

 COH rings

 10 Marks)